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o grey box: fusing information to relax the need to exactly model the

underlying physics, while requiring considerably less data : S—
Industrial applications
Methodology Applications to product cost reduction in mass production Radiall e

RBDO formulation

© Optimization under reliability constraints: aim to identify admissible design
with optimal performance

04

03

02 #fe

© Minimizing a cost function f while satisfying the performance function g
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© Optimal solutions lie on the boundaries of the admissible space
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Find: XOptRe/ = arg min f()_(’ 'D(k))
X

Subject to: Prob(g(X(X, w ), P(w))

Discussion and future work

© Discrepancies have been observed among various Python packages

© The review will be extended to more packages and scenarios (e.g. different

© Main problem: computational time consuming s |
kernel types and other optimization algorithms)

L. Metamodel-based strategy — Adaptive Kriging | | | | |
o ZLero-order algorithm will be investigated to deal with RBDO problems
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, Classify a MC sample using ML separators J ¥
defined in an augmented-space and 0-order O Multifidelity compute.r codes with different conficel?ce_ Iev.els VYi|| be
algorithms (e.g. Genetic Algorithm) 8& 1 investigated and applied to decrease the global optimization time
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Benchmark case-study
© FE model: rectangular shell plate (1.5mx1m) clamped at the four edges e

O Load: pressure of 100 Pa uniformly applied at the surface
o Fiber orientation: x ={xy, ..., x, where m € (2,4, 8, 16, 32] i
© MC sampling: input space with a uniform distribution between 0° and 180°
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O Qol: displacement Y at the center of the plate Contacts
© Kriging surrogate: Y(x) = > 7, B;f;(x) + Z(x)

© Matérn 3/2 kernel: R(x,x’;0) = (1 1 \/§‘X—9_X") exp[ _ \@\X—GX’\}

_&EI

[u]
s |

ipE[m]  Website: https://www.greydient.eu
E-F Linkedin: https://www.linkedin.com/company/itngreydient
4

4 Twitter: https:/ /www.twitter.com/ITNGreydient

GREYDIENT k

alessio.faraci@sigma-clermont.fr


https://www.greydient.eu
https://www.linkedin.com/company/itngreydient
https://twitter.com/ITNGreydient

