The use of machine learning and grey-box models to solve complex time-consuming RBDO problems Application to mass production mechanical systems Alessio Faraci¹, Pierre Beaurepaire¹, Nicolas Gayton¹

¹SIGMA Clermont - 63178 Aubière Cedex, France

Objectives

- 1. Develop an efficient approach for reliability estimation
- 2. Apply this method in a multi-fidelity modelling context
- 3. Apply zero-order optimization problem based on machine learning separators
- 4. Apply developments to production processes in collaboration with Radiall

Benchmark case-study results

Introduction

Context

Structural design goal: to be optimal, reliable regarding uncertainties Applying grey-box approaches for reliability analysis, optimizing and controlling of production process and systems

Grey-box modelling

- white box: physics-based computational models
- □ **black box**: mathematical models based on ML approaches built from observational data

grey box: fusing information to relax the need to exactly model the underlying physics, while requiring considerably less data

Methodology

RBDO formulation

Optimization under reliability constraints: aim to identify admissible design with optimal performance

Figure 1: Nord-West: Cross-validation plot for SMT, dimension 4; Nord-East: MSE for increasing value of N_{ED} ; South-West: MSE at different dimensionality; South-East: MSE vs time.

Industrial applications

Applications to product cost reduction in mass production

 \odot Minimizing a cost function f while satisfying the performance function g Optimal solutions lie on the boundaries of the admissible space

Find: $\bar{X}_{OptRel} = \arg\min_{\bar{X}} f(\bar{X}, P^{(k)})$ Subject to: $Prob(g(X(\bar{X}, \omega), P(\omega)) \leq 0) \leq P_{target}$

Main problem: computational time consuming \downarrow Metamodel-based strategy \rightarrow Adaptive Kriging L Classify a MC sample using ML separators defined in an augmented-space and 0-order algorithms (e.g. Genetic Algorithm)

First investigation: review on Python toolboxes for Kriging

1. Focus on:

- └→ comparing the various settings available for each library
- 4 to ascertain how they perform and differ under similar assumptions

2. Comparison on:

↓ computational time-cost for different size of ED

Discussion and future work

- Discrepancies have been observed among various Python packages The review will be extended to more packages and scenarios (e.g. different
 kernel types and other optimization algorithms) Zero-order algorithm will be investigated to deal with RBDO problems
- Oultifidelity computer codes with different confidence levels will be investigated and applied to decrease the global optimization time

References

- [1] C. K. Williams and C. E. Rasmussen, *Gaussian processes for machine learning*. MIT press Cambridge, MA, 2006, vol. 2, no. 3.
- [2] V. Dubourg, "Méta-modèles adaptatifs pour l'analyse de fiabilité et l'optimisation sous contrainte fiabiliste," Ph.D. dissertation, Clermont-Ferrand 2, 2011.
- [3] B. Echard, N. Gayton, and M. Lemaire, "Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation," Structural Safety, vol. 33, no. 2, pp. 145–154, 2011.
- [4] N. Lelièvre, P. Beaurepaire, C. Mattrand, N. Gayton, and A. Otsmane, "On the consideration of uncertainty in

↓ prediction accuracy by means of Mean of the Squared Errors (MSE) $MSE = \frac{1}{n} \sum_{i=1}^{n} (Y(x_i^*) - \tilde{Y}(x_i^*))^2$

Benchmark case-study

 \bigcirc FE model: rectangular shell plate (1.5m×1m) clamped at the four edges ○ Load: pressure of 100 *Pa* uniformly applied at the surface \bigcirc Fiber orientation: $x = \{x_1, ..., x_m\}$ where $m \in [2, 4, 8, 16, 32]$ \odot MC sampling: input space with a uniform distribution between 0° and 180° \bigcirc Qol: displacement Y at the center of the plate \odot Kriging surrogate: $\tilde{Y}(x) = \sum_{j=1}^{p} \beta_j f_j(x) + Z(x)$ \bigcirc Matérn 3/2 kernel: $R(x, x'; \theta) = (1 + \sqrt{3} \frac{|x-x'|}{\theta}) exp[-\sqrt{3} \frac{|x-x'|}{\theta}]$

design: optimization-reliability-robustness," Structural and Multidisciplinary Optimization, vol. 54, no. 6, pp. 1423–1437, 2016.

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 955393.

Contacts

Website: https://www.greydient.eu Linkedin: https://www.linkedin.com/company/itngreydient Twitter: https://www.twitter.com/ITNGreydient

alessio.faraci@sigma-clermont.fr