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Objectives

1. Develop an efficient approach for reliability estimation

2. Apply this method in a multi-fidelity modelling context

3. Apply zero-order optimization problem based on machine learning separators

4. Apply developments to production processes in collaboration with Radiall

Introduction

Context

⊖ Structural design goal: to be optimal, reliable regarding uncertainties

⊖ Applying grey-box approaches for reliability analysis, optimizing and
controlling of production process and systems

Grey-box modelling

⊖ white box: physics-based
computational models

⊖ black box: mathematical models
based on ML approaches built
from observational data

⊖ grey box: fusing information to relax the need to exactly model the
underlying physics, while requiring considerably less data

Methodology

RBDO formulation

⊖ Optimization under reliability constraints: aim to identify admissible design
with optimal performance

⊖ Minimizing a cost function f while satisfying the performance function g

⊖ Optimal solutions lie on the boundaries of the admissible space

Find: X̄OptRel = arg min
X̄

f
(
X̄ ,P (k)

)
Subject to: Prob

(
g
(
X (X̄ ,ω),P(ω)

)
⩽ 0

)
⩽ Ptarget

⊚ Main problem: computational time consuming
↱

Metamodel-based strategy → Adaptive Kriging
↱

Classify a MC sample using ML separators
defined in an augmented-space and 0-order
algorithms (e.g. Genetic Algorithm)

First investigation: review on Python toolboxes for Kriging

1. Focus on:
↱

comparing the various settings available for each library
↱

to ascertain how they perform and differ under similar assumptions

2. Comparison on:
↱

computational time-cost for different size of ED
↱

prediction accuracy by means of Mean of the Squared Errors (MSE)

MSE = 1
n

∑n
i=1

(
Y (x∗i ) − Ỹ (x∗i )

)2

Benchmark case-study

⊖ FE model: rectangular shell plate (1.5m×1m) clamped at the four edges

⊖ Load: pressure of 100 Pa uniformly applied at the surface

⊖ Fiber orientation: x = {x1, . . . , xm} where m ∈ [2, 4, 8, 16, 32]

⊖ MC sampling: input space with a uniform distribution between 0◦ and 180◦

⊖ QoI : displacement Y at the center of the plate

⊖ Kriging surrogate: Ỹ (x) =
∑p

j=1 βjfj(x) + Z (x)

⊖ Matérn 3/2 kernel: R(x , x ′; θ) =
(

1 +
√

3|x−x ′|
θ

)
exp

[
−
√

3|x−x ′|
θ

]

Benchmark case-study results
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Figure 1: Nord-West: Cross-validation plot for SMT, dimension 4; Nord-East: MSE for increasing value of NED;

South-West: MSE at different dimensionality; South-East: MSE vs time.

Industrial applications

Applications to product cost reduction in mass production

Discussion and future work

⊖ Discrepancies have been observed among various Python packages

⊖ The review will be extended to more packages and scenarios (e.g. different
kernel types and other optimization algorithms)

⊖ Zero-order algorithm will be investigated to deal with RBDO problems

⊖ Multifidelity computer codes with different confidence levels will be
investigated and applied to decrease the global optimization time
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